Câu hỏi
Tìm mệnh đề đúng trong các mệnh đề sau
- A \(\mathop {\lim }\limits_{x \to 0} {{\sqrt {x + 1} - \root 3 \of {x + 1} } \over x} = - {1 \over 6}\)
- B \(\mathop {\lim }\limits_{x \to 1} {{\sqrt {5 - x} - 2} \over {\sqrt {2 - x} - 1}} = {3 \over 2}\)
- C \(\mathop {\lim }\limits_{x \to 1} {{\root 3 \of x - \sqrt x } \over {{x^2} - 1}} = - {1 \over {12}}\)
- D \(\mathop {\lim }\limits_{x \to 2} {{x - \sqrt {3x - 2} } \over {{x^2} - 4}} = - {1 \over {16}}\)
Phương pháp giải:
Tính giới hạn của các hàm số ở từng đáp án.
Lời giải chi tiết:
\(\eqalign{ & \mathop {\lim }\limits_{x \to 0} {{\sqrt {x + 1} - \root 3 \of {x + 1} } \over x} = \mathop {\lim }\limits_{x \to 0} \left( {{{\sqrt {x + 1} - 1} \over x} - {{\root 3 \of {x + 1} - 1} \over x}} \right) \cr & = \mathop {\lim }\limits_{x \to 0} {{\sqrt {x + 1} - 1} \over x} - \mathop {\lim }\limits_{x \to 0} {{\root 3 \of {x + 1} - 1} \over x} \cr & = \mathop {\lim }\limits_{x \to 0} {{x + 1 - 1} \over {x\left( {\sqrt {x + 1} + 1} \right)}} - \mathop {\lim }\limits_{x \to 0} {{x + 1 - 1} \over {x\left( {{{\root 3 \of {x + 1} }^2} + \root 3 \of {x + 1} + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} {1 \over {\sqrt {x + 1} + 1}} - \mathop {\lim }\limits_{x \to 0} {1 \over {{{\root 3 \of {x + 1} }^2} + \root 3 \of {x + 1} + 1}} \cr & = {1 \over {1 + 1}} - {1 \over {1 + 1 + 1}} = {1 \over 6} \cr} \)
\( \Rightarrow \) Đáp án A sai.
\(\mathop {\lim }\limits_{x \to 1} {{\sqrt {5 - x} - 2} \over {\sqrt {2 - x} - 1}} = \mathop {\lim }\limits_{x \to 1} {{\left( {5 - x - 4} \right)\left( {\sqrt {2 - x} + 1} \right)} \over {\left( {2 - x - 1} \right)\left( {\sqrt {5 - x} + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} {{\left( {1 - x} \right)\left( {\sqrt {2 - x} + 1} \right)} \over {\left( {1 - x} \right)\left( {\sqrt {5 - x} + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} {{\sqrt {2 - x} + 1} \over {\sqrt {5 - x} + 2}} = {{1 + 1} \over {2 + 2}} = {1 \over 2}\)
\( \Rightarrow \) Đáp án B sai.
\(\eqalign{ & \mathop {\lim }\limits_{x \to 1} {{\root 3 \of x - \sqrt x } \over {{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {{{\root 3 \of x - 1} \over {{x^2} - 1}} - {{\sqrt x - 1} \over {{x^2} - 1}}} \right) = \mathop {\lim }\limits_{x \to 1} {{\root 3 \of x - 1} \over {{x^2} - 1}} - \mathop {\lim }\limits_{x \to 1} {{\sqrt x - 1} \over {{x^2} - 1}} \cr & = \mathop {\lim }\limits_{x \to 1} {{x - 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {{{\root 3 \of x }^2} + \root 3 \of x + 1} \right)}} - \mathop {\lim }\limits_{x \to 1} {{x - 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {\sqrt x + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 1} {1 \over {\left( {x + 1} \right)\left( {{{\root 3 \of x }^2} + \root 3 \of x + 1} \right)}} - \mathop {\lim }\limits_{x \to 1} {1 \over {\left( {x + 1} \right)\left( {\sqrt x + 1} \right)}} \cr & = {1 \over {\left( {1 + 1} \right)\left( {1 + 1 + 1} \right)}} - {1 \over {\left( {1 + 1} \right)\left( {1 + 1} \right)}} = {1 \over 6} - {1 \over 4} = - {1 \over {12}} \cr} \)
\( \Rightarrow \) Đáp án C đúng.
\(\eqalign{ & \mathop {\lim }\limits_{x \to 2} {{x - \sqrt {3x - 2} } \over {{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} {{{x^2} - 3x + 2} \over {\left( {{x^2} - 4} \right)\left( {x + \sqrt {3x - 2} } \right)}} \cr & = \mathop {\lim }\limits_{x \to 2} {{\left( {x - 2} \right)\left( {x - 1} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + \sqrt {3x - 2} } \right)}} = \mathop {\lim }\limits_{x \to 2} {{x - 1} \over {\left( {x + 2} \right)\left( {x + \sqrt {3x - 2} } \right)}} = {{2 - 1} \over {\left( {2 + 2} \right)\left( {2 + 2} \right)}} = {1 \over {16}} \cr} \)
\( \Rightarrow \) Đáp án D sai.
Chọn C.