Môn Toán - Lớp 12
30 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Tồn tại bao nhiêu giá trị nguyên của tham số \(m\) trong đoạn \(\left[ -2017;2017 \right]\) sao cho đồ thị hàm số \(y=\frac{x-2}{\left( {{x}^{2}}-4mx+4 \right)\left( m{{x}^{2}}-2x+4 \right)}\) có đúng một đường tiệm cận.
- A \(1\)
- B \(2017\)
- C \(4034\)
- D \(0\)
Phương pháp giải:
- Tìm tiệm cận ngang của đồ thị hàm số.
- Điều kiện để đồ thị hàm số chỉ có duy nhất 1 tiệm cận là nó không có tiệm cận đứng, hay mẫu thức vô nghiệm hoặc có 1 nghiệm duy nhất là nghiệm đơn \(x=2\).
Lời giải chi tiết:
Dễ thấy \(\underset{x\to \pm \infty }{\mathop{\lim }}\,y=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{x-2}{\left( {{x}^{2}}-4mx+4 \right)\left( m{{x}^{2}}-2x+4 \right)}=0\) nên \(y=0\) là đường tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số chỉ có 1 đường tiệm cận thì nó không có tiệm cận đứng.
Khi đó phương trình \(\left( {{x}^{2}}-4mx+4 \right)\left( m{{x}^{2}}-2x+4 \right)=0\) vô nghiệm hoặc có nghiệm duy nhất \(x=2\) (nghiệm đơn).
Trường hợp 1: Phương trình \(\left( {{x}^{2}}-4mx+4 \right)\left( m{{x}^{2}}-2x+4 \right)=0\) vô nghiệm.
\(\Leftrightarrow \) cả hai phương trình \({{x}^{2}}-4mx+4=0\) và \(m{{x}^{2}}-2x+4=0\) đều vô nghiệm.
+) Phương trình \({{x}^{2}}-4mx+4=0\) vô nghiệm \(\Leftrightarrow {{\Delta }_{1}}'=4{{m}^{2}}-4<0\Leftrightarrow -1<m<1\).
+) Phương trình \(m{{x}^{2}}-2x+4=0\) vô nghiệm \(\Leftrightarrow {{\Delta }_{2}}'=1-4m<0\Leftrightarrow m>\frac{1}{4}\).
Kết hợp hai điều kiện trên ta được \(\frac{1}{4}<m<1\).
Do đó trong trường hợp này không có số nguyên nào thỏa mãn.
Trường hợp 2: Phương trình \(\left( {{x}^{2}}-4mx+4 \right)\left( m{{x}^{2}}-2x+4 \right)=0\) có 1 nghiệm duy nhất là nghiệm đơn \(x=2\).
Với \(x=2\) thì \(\left( {{2}^{2}}-4m.2+4 \right)\left( m{{.2}^{2}}-2.2+4 \right)=0\Leftrightarrow \left( 8-8m \right).4m=0\Leftrightarrow \left[ \begin{align} & m=0 \\ & m=1 \\ \end{align} \right.\).
+) Nếu \(m=0\) thì \(y=\frac{x-2}{\left( {{x}^{2}}+4 \right)\left( -2x+4 \right)}=-\frac{1}{2\left( {{x}^{2}}+4 \right)}\) nên đồ thị hàm số không có tiệm cận đứng và chỉ có 1 tiệm cận duy nhất (thỏa mãn).
+) Nếu \(m=1\) thì \(y=\frac{x-2}{\left( {{x}^{2}}-4x+4 \right)\left( {{x}^{2}}-2x+4 \right)}=-\frac{1}{\left( x-2 \right)\left( {{x}^{2}}+4 \right)}\) nên đồ thị hàm số có 1 tiệm cận đứng \(x=2\) và một tiệm cận ngang \(y=0\) (loại).
Vậy \(m=0\) và có 1 giá trị nguyên duy nhất của \(m\) thỏa bài toán.
Chọn A.