Câu hỏi
Một người chạy xe máy chuyển động thẳng theo phương trình \(S\left( t \right) = {t^3} - 3{t^2} + 4t\) trong đó t tính bằng giây (s), S tính bằng mét (m). Gia tốc của xe máy lúc \(t = 2s\) bằng:
- A \(4\) m/s2
- B \(6\) m/s2
- C \(8\) m/s2
- D \(12\) m/s2
Phương pháp giải:
+) Sử dụng các công thức \(v\left( t \right) = \left( {S\left( t \right)} \right)',\,a\left( t \right) = \left( {v\left( t \right)} \right)'\)
+) Tính a(2).
Lời giải chi tiết:
Vận tốc tại thời điểm t là: \(v\left( t \right) = \left( {S\left( t \right)} \right)' = 3{t^2} - 6t + 4\)
Gia tốc tại thời điểm t là : \(a\left( t \right) = \left( {v\left( t \right)} \right)' = 6t - 6\)
Suy ra gia tốc tại thời điểm t = 2s là \(a\left( 2 \right) = 6.2 - 6 = 6\,\,\left( {m/{s^2}} \right)\)
Chọn B.