Câu hỏi

Giá trị lớn nhất của hàm số \(y=\sqrt{5-{{x}^{2}}}+x\) là:

  • A \(\pi \).                                                           
  • B \( \frac{\sqrt{41}}{2}\).
  • C \(\sqrt{10}\).     
  • D \(\frac{\sqrt{89}}{3}\).

Phương pháp giải:

Tìm tập xác định của hàm số, sử dụng MTCT tìm GTLN của hàm số.

Lời giải chi tiết:

TXĐ : \(D=\left[ -\sqrt{5};\sqrt{5} \right]\)

Sử dụng MTCT, ấn [MODE] [7], nhập hàm số \(y=\sqrt{5-{{x}^{2}}}+x\), \( Start=-\sqrt{5}\),  \(End=\sqrt{5}\), \(Step=\frac{\sqrt{5}-\left( -\sqrt{5} \right)}{19}\) ta được :

\(\Rightarrow \underset{\left[ -\sqrt{5};\sqrt{5} \right]}{\mathop{\max }}\,y\approx 3,16\approx \sqrt{10}\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay