Câu hỏi
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường \(\left( E \right):\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{9}=1\) quay quanh \(Oy\,\,?\)
- A \(V=36\pi .\)
- B \(V=24\pi .\) .
- C \(V=16\pi .\)
- D \(V=64\pi .\)
Phương pháp giải:
Rút hàm số đã cho theo biến y : \(x=f\left( y \right)\), Vẽ hình và xác định các đường giới hạn.
Áp dụng công thức tính thể tích khối tròn khi xoay quanh trục Oy của hình phẳng bị giới hạn bởi đồ thị các hàm số \(x=f\left( y \right),x=g\left( y \right),y=a,y=b\) là \(V=\int\limits_{a}^{b}{\left| {{f}^{2}}\left( y \right)-{{g}^{2}}\left( y \right) \right|dy}\).
Lời giải chi tiết:
\(\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{9}=1\Leftrightarrow {{x}^{2}}=16\left( 1-\frac{{{y}^{2}}}{9} \right)\Leftrightarrow x=\pm \frac{4}{3}\sqrt{9-{{y}^{2}}}\)
Phương trình tung độ giao điểm của đồ thị \(\left( E \right)\) với \(Oy\) là \(\frac{0}{16}+\frac{{{y}^{2}}}{9}=1\Leftrightarrow \left( \begin{align} & y=-\,3 \\ & y=3 \\ \end{align} \right..\)
Ta xét thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị hàm số \(x=\frac{4}{3}\sqrt{9-{{y}^{2}}}\), đường thẳng x = 0, y = 3, y = 0 quanh trục Ox là: \(V=\left| \frac{16}{9}\pi \int\limits_{0}^{3}{\left( 9-{{y}^{2}} \right)dy} \right|=\left| \frac{16}{9}\left. \pi \left( 9y-\frac{{{y}^{3}}}{3} \right) \right|_{0}^{3} \right|=32\pi \)
Khi đó thể tích cần tìm là \(2V=64\pi \)
Chọn D.