Câu hỏi

Số đường tiệm cận đứng của đồ thị hàm số \(y=\dfrac{{{x}^{2}}-3x-4}{{{x}^{2}}-16}\) là:

  • A 0
  • B 3
  • C 1
  • D 2

Phương pháp giải:

\(x={{x}_{o}}\) là tiệm cận đứng của đồ thị hàm số \(y=f\left( x \right)\) nếu thỏa mãn ít nhất: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_o^ - } \,f\left( x \right) =  + \infty \\\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) =  - \infty \\\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) =  + \infty \\\mathop {\lim }\limits_{x \to x_o^ + } \,f\left( x \right) =  - \infty \end{array} \right.\)

(Chú ý: có thể tìm các nghiệm của mẫu thức và kiểm tra xem có bao nhiêu nghiệm của mẫu thức không là nghiệm của tử thức thì đó chính là đáp án cần tìm)

Lời giải chi tiết:

Ta có: \(y=\frac{{{x}^{2}}-3x-4}{{{x}^{2}}-16}=\frac{\left( x+1 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}=\frac{x+1}{x+4}\).

Vậy đồ thị hàm số chỉ có \(1\)tiệm cận đứng \(x=-4\).

Đáp án C

 


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay