Câu hỏi
Xác định tập hợp tất cả những điểm trong mặt phẳng tọa độ biểu diễn các số phức z sao cho \({{z}^{2}}\) là số thực âm.
- A \(\{(0,y)\mid y\in R\}\)
- B \(\{(x,0)\mid x\in R\}\)
- C \(\{(0,y)\mid y\ne 0\}\)
- D \(\{(x,0)\mid x<0\}\)
Phương pháp giải:
Phương pháp tìm tập hợp điểm biểu diễn số phức
Bước 1: Gọi số phức \(z=x+yi\)có điểm biểu diễn là \(M(x;y)\)
Bước 2: Thay z vào đề bài \(\Rightarrow \)Sinh ra một phương trình:
+) Đường thẳng: \(Ax+By+C=0.\)
+) Đường tròn: \({{x}^{2}}+{{y}^{2}}-2ax-2by+c=0.\)
+) Parabol: \(y=a.{{x}^{2}}+bx+c\)
+) Elip: \(\frac{{{x}^{2}}}{a}+\frac{{{y}^{2}}}{b}=1\)
Lời giải chi tiết:
Giả sử ta có số phức \(z=x+yi\) . Ta có \({{z}^{2}}={{(x+yi)}^{2}}={{x}^{2}}-{{y}^{2}}+2xyi\).
\({{z}^{2}}\) là số thực âm \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} - {y^2} < 0}&{}\\{xy = 0}&{}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}&{}\\{y \ne 0}&{}\end{array}} \right..\)
Chọn C