Câu hỏi
Phát biểu nào trong các phát biểu sau là đúng?
- A Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trái tại \({x_0}\) thì nó liên tục tại điểm đó
- B Nếu hàm số \(y = f\left( x \right)\) có đạo hàm phải tại \({x_0}\) thì nó liên tục tại điểm đó
- C Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì nó liên tục tại điểm \( - {x_0}\)
- D Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì nó liên tục tại điểm đó
Phương pháp giải:
Phương pháp:
Định nghĩa đạo hàm: Nếu hàm số \(f\left( x \right)\) xác định tại \({x_0}\) và tồn tại giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì hàm số \(f\left( x \right)\) có đạo hàm tại \({x_0}\).
Định nghĩa hàm số liên tục tại một điểm: Nếu hàm số \(f\left( x \right)\) xác định tại \({x_0}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại \({x_0}\).
Lời giải chi tiết:
Cách giải:
Dựa vào định nghĩa đạo hàm, ta có kết quả:
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì tồn tại giới hạn \(L = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Do đó \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) vì nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \pm \infty \)
Do đó hàm số liên tục tại điểm \(x = {x_0}\).
Chọn đáp án D


