Câu hỏi

\(\mathop {\lim }\limits_{x \to  - \infty } \left( { - {x^3} + 3x} \right)\) bằng

  • A 3
  • B \( - \infty \)
  • C 2
  • D \( + \infty .\)

Phương pháp giải:

Đưa \({x^3}\) ra ngoài.

\(\mathop {\lim }\limits_{x \to  - \infty } {x^{2k + 1}} =  - \infty ,k \in \mathbb{Z}\)

\(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty ,k < 0\)\( =  > \mathop {\lim }\limits_{x \to  - \infty } k.f\left( x \right) =  + \infty \)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } \left( { - {x^3} + 3x} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^3}.\left( { - 1 + \dfrac{3}{{{x^2}}}} \right) =  + \infty \)


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay