Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ thông hiểu
Câu hỏi
Gọi \(m,\,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right]\). Tính tổng \(S = 3m + M\).
- A \(S = \dfrac{{13}}{2}\)
- B \(S = \dfrac{{63}}{2}\)
- C \(S = \dfrac{{25}}{2}\)
- D \(S = \dfrac{{11}}{2}\)
Phương pháp giải:
- Tính đạo hàm \(y'\) và tìm nghiệm của phương trình \(y' = 0\) thuộc \(\left[ { - 1;34} \right]\).
- Tính giá trị của hàm số tại các điểm đầu mút và tại điểm là nghiệm của phương trình \(y' = 0\) thuộc \(\left[ { - 1;34} \right]\).
- So sánh các giá trị này và kết luận GTNN, GTLN.
Lời giải chi tiết:
TXĐ : \(D = \left[ { - 2; + \infty } \right)\).
Ta có : \(y' = \dfrac{1}{2} - \dfrac{1}{{2\sqrt {x + 2} }} = \dfrac{{\sqrt {x + 2} - 1}}{{2\sqrt {x + 2} }}\).
Cho \(y' = 0 \Leftrightarrow \sqrt {x + 2} - 1 = 0\)\( \Leftrightarrow \sqrt {x + 2} = 1 \Leftrightarrow x = - 1 \in \left[ { - 1;34} \right]\).
Lại có : \(y\left( { - 1} \right) = - \dfrac{3}{2},y\left( {34} \right) = 11\) nên \(m = \mathop {\min }\limits_{\left[ { - 1;34} \right]} y = y\left( { - 1} \right) = - \dfrac{3}{2};\,\,M = \mathop {\max }\limits_{\left[ { - 1;34} \right]} y = y\left( {34} \right) = 11\).
Vậy \(3m + M = 3.\left( { - \dfrac{3}{2}} \right) + 11 = \dfrac{{13}}{2}\).
Chọn A.