Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ thông hiểu
Câu hỏi
Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^2} + \dfrac{2}{x}\) trên đoạn \(\left[ {\dfrac{1}{2};2} \right]\) bằng:
- A \(\dfrac{{84}}{4}\)
- B \(15\)
- C \(\dfrac{{51}}{4}\)
- D \(8\)
Phương pháp giải:
- Tính \(f'\left( x \right)\), giải phương trình \(f'\left( x \right) = 0\) và xác định các nghiệm \({x_i} \in \left[ {\dfrac{1}{2};2} \right]\).
- Tính \(f\left( {\dfrac{1}{2}} \right),\,\,f\left( 2 \right),\,\,f\left( {{x_i}} \right)\).
- Kết luận: \(\mathop {\max }\limits_{\left[ {\dfrac{1}{2};2} \right]} f\left( x \right) = \max \left\{ {f\left( {\dfrac{1}{2}} \right);\,\,f\left( 2 \right);\,\,f\left( {{x_i}} \right)} \right\}\), \(\mathop {\min }\limits_{\left[ {\dfrac{1}{2};2} \right]} f\left( x \right) = \min \left\{ {f\left( {\dfrac{1}{2}} \right);\,\,f\left( 2 \right);\,\,f\left( {{x_i}} \right)} \right\}\).
Lời giải chi tiết:
Hàm số đã cho xác định trên \(\left[ {\dfrac{1}{2};2} \right]\).
Ta có \(y' = 2x - \dfrac{2}{{{x^2}}} = \dfrac{{2\left( {{x^3} - 1} \right)}}{{{x^2}}}\), \(y' = 0 \Leftrightarrow {x^3} - 1 = 0 \Leftrightarrow x = 1 \in \left[ {\dfrac{1}{2};2} \right]\).
Ta có \(y\left( {\dfrac{1}{2}} \right) = \dfrac{{17}}{4};\,\,y\left( 2 \right) = 5,\,\,y\left( 1 \right) = 3\).
Suy ra \(\mathop {\max }\limits_{\left[ {\dfrac{1}{2};2} \right]} y = y\left( 2 \right) = 5,\,\,\mathop {\min }\limits_{\left[ {\dfrac{1}{2};2} \right]} y = y\left( 1 \right) = 3\).
Vậy \(\mathop {\max }\limits_{\left[ {\dfrac{1}{2};2} \right]} y.\mathop {\min }\limits_{\left[ {\dfrac{1}{2};2} \right]} y = 5.3 = 15\).
Chọn B.