Câu hỏi

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Số đường tiệm cận của đồ thị hàm số \(g\left( x \right) = \dfrac{1}{{2f\left( x \right) - 3}}\) là:

  • A \(2\)
  • B \(4\)
  • C \(5\)
  • D \(3\)

Phương pháp giải:

Sử dụng định nghĩa đường tiệm cận của đồ thị hàm số: Cho hàm số \(y = f\left( x \right)\).

- Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số nếu thỏa mãn một trong các điều kiện \(\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\).

- Đường thẳng \(x = {x_0}\) được gọi là TCĐ của đồ thị hàm số nếu thỏa mãn một trong các điều kiện \(\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \).

Lời giải chi tiết:

Dựa vào BBT ta thấy: \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty ,\,\,\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \).

Khi đó ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{1}{{2f\left( x \right) - 3}} = 0\\\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{2f\left( x \right) - 3}} = 0\end{array}\)

Do đó đồ thị hàm số \(y = g\left( x \right)\) có TCN \(y = 0\).

Dựa vào BBT ta lại thấy: Phương trình \(2f\left( x \right) - 3 = 0 \Leftrightarrow f\left( x \right) = \dfrac{3}{2}\) có 3 nghiệm phân biệt, và 3 nghiệm này không bị triệt tiêu bởi nghiệm của tử. Do đó đồ thị hàm số có 3 đường tiệm cận đứng.

Vậy đồ thị hàm số \(g\left( x \right) = \dfrac{1}{{2f\left( x \right) - 3}}\) có tất cả 4 đường tiệm cận.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay