Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Gọi \(k,\,\,K\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = f\left( { - 2x} \right)\) trên đoạn \(\left[ { - 1;\,\,\dfrac{1}{2}} \right].\)Giá trị của \(k + K\) bằng:
- A \(4\)
- B \(0\)
- C \(\dfrac{{19}}{8}\)
- D \( - 4\)
Phương pháp giải:
- Đặt \(y = g\left( x \right) = f\left( { - 2x} \right)\).
- Giải phương trình \(g'\left( x \right) = 0\), xác định các nghiệm \({x_i} \in \left[ { - 1;\dfrac{1}{2}} \right]\).
- Tính các giá trị \(g\left( { - 1} \right),\,\,g\left( {\dfrac{1}{2}} \right),\,\,g\left( {{x_i}} \right)\) và kết luận GTLN, GTNN của hàm số trên \(\left[ { - 1;\dfrac{1}{2}} \right]\).
Lời giải chi tiết:
Đặt \(y = g\left( x \right) = f\left( { - 2x} \right)\) ta có \(g'\left( x \right) = - 2f'\left( { - 2x} \right)\).
Dựa vào đồ thị hàm số \(y = f\left( x \right)\), ta thấy hàm số có 3 điểm cực trị \(x = - 1,\,\,x = 0,\,\,x = 2\).
\( \Rightarrow g'\left( x \right) = 0 \Leftrightarrow f'\left( { - 2x} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l} - 2x = - 1\\ - 2x = 0\\ - 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{1}{2} \in \left[ { - 1;\dfrac{1}{2}} \right]\\x = 0 \in \left[ { - 1;\dfrac{1}{2}} \right]\\x = - 1 \in \left[ { - 1;\dfrac{1}{2}} \right]\end{array} \right.\).
Ta có \(g\left( {\dfrac{1}{2}} \right) = f\left( { - 1} \right) \in \left( { - \dfrac{{13}}{8};0} \right)\), \(g\left( 0 \right) = f\left( 0 \right) = 0\), \(g\left( { - 1} \right) = f\left( 2 \right) = - 4\).
\( \Rightarrow k = \mathop {\min }\limits_{\left[ { - 1;\frac{1}{2}} \right]} g\left( x \right) = - 4,\,\,K = \mathop {\max }\limits_{\left[ { - 1;\frac{1}{2}} \right]} g\left( x \right) = 0\).
Vậy \(k + K = - 4 + 0 = - 4.\)
Chọn D.