Câu hỏi
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ bên dưới. Phương trình \(f\left( x \right) - 2 = 0\) có bao nhiêu nghiệm?
- A \(2\)
- B \(3\)
- C \(1\)
- D \(4\)
Phương pháp giải:
Số nghiệm của phương trình \(f\left( x \right) - 2 = 0\,\, \Leftrightarrow f\left( x \right) = 2\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2.\)
Dựa vào bảng biến thiên rồi tìm số giao điểm của hai đồ thị và chọn đáp án đúng.
Lời giải chi tiết:
Số nghiệm của phương trình \(f\left( x \right) - 2 = 0\,\, \Leftrightarrow f\left( x \right) = 2\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2.\)
Ta có đồ thị hàm số:
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 2\) cắt đồ thị hàm số \[y = f\left( x \right)\] tại 4 điểm phân biệt.
\( \Rightarrow \) Phương trình \(f\left( x \right) - 2 = 0\) có 4 nghiệm phân biệt.
Chọn D.