Câu hỏi
Một hộp chứa 10 quả cầu được đánh số theo thứ tự từ 1 đến 10, lấy ngẫu nhiên 5 quả cầu. Xác suất để tích các số ghi trên 5 quả cầu đó chia hết cho 3 bằng:
- A \(\dfrac{5}{{12}}\)
- B \(\dfrac{7}{{12}}\)
- C \(\dfrac{1}{{12}}\)
- D \(\dfrac{{11}}{{12}}\)
Phương pháp giải:
- Tính số phần tử của không gian mẫu.
- Gọi A là biến cố: “tích các số ghi trên 5 quả cầu đó chia hết cho 3”. Để tích 5 số chia hết cho 3 thì trong 5 số phải có ít nhất 1 số thuộc tập X. Xét biến cố đối.
- Sử dụng công thức \(P\left( A \right) = 1 - P\left( {\bar A} \right)\).
Lời giải chi tiết:
Chọn ngẫu nhiên 5 quả cầu từ 10 quả cầu \( \Rightarrow \) Không gian mẫu: \(n\left( \Omega \right) = C_{10}^5\).
Gọi A là biến cố: “tích các số ghi trên 5 quả cầu đó chia hết cho 3”.
Ta chia các số từ 1 đến 10 thành 2 tập hợp: \(X = \left\{ {3;6;9} \right\}\) và \(Y = \left\{ {1;2;4;5;7;8;10} \right\}\).
Để tích 5 số chia hết cho 3 thì trong 5 số phải có ít nhất 1 số thuộc tập X.
Xét biến cố đối: “Không có số nào trong 5 số chia hết cho 3” \( \Rightarrow \) Chọn 5 số từ tập hợp Y có \(C_7^5\) cách.
\( \Rightarrow n\left( {\bar A} \right) = C_7^5\) \( \Rightarrow P\left( {\bar A} \right) = \dfrac{{C_7^5}}{{C_{10}^5}} = \dfrac{1}{{12}}\).
Vậy \(P\left( A \right) = 1 - P\left( {\bar A} \right) = \dfrac{{11}}{{12}}\).
Chọn D.