Câu hỏi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Số nghiệm của phương trình \(f\left( x \right) = 2020\) là:

  • A \(4\)
  • B \(1\)
  • C \(2\)
  • D \(3\)

Phương pháp giải:

- Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị \(y = f\left( x \right)\) và đường thẳng \(y = m\) song song với trục hoành.

- Dựa vào BBT xác định số giao điểm.

Lời giải chi tiết:

Số nghiệm của phương trình \(f\left( x \right) = 2020\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2020\) song song với trục hoành.

Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 2020\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm duy nhất.

Vậy phương trình \(f\left( x \right) = 2020\) có 1 nghiệm duy nhất.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay