Môn Toán - Lớp 12
30 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hàm số \(f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\), có bảng biến thiên như sau:
Hỏi đồ thị hàm số \(y = \dfrac{1}{{f\left( x \right)}}\)có tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
- A \(4\)
- B \(3\)
- C \(2\)
- D \(1\)
Phương pháp giải:
Dựa vào định ngĩa đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\).
- Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số khi thỏa mãn một trong các điều kiện: \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\).
- Đường thẳng \(x = {x_0}\) được gọi là TCĐ của đồ thị hàm số khi thỏa mãn một trong các điều kiện: \(\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \).
Lời giải chi tiết:
Dựa vào BBT ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = 2\), \(\mathop {\lim }\limits_{x \to + \infty } y = - 2\), \(\mathop {\lim }\limits_{x \to - {1^ - }} y = - \infty \), \(\mathop {\lim }\limits_{x \to - {1^ + }} y = + \infty \).
Đặt \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\) ta có:
\(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{f\left( x \right)}} = - \dfrac{1}{2}\) \( \Rightarrow y = - \dfrac{1}{2}\) là TCN của đồ thị hàm số \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\).
\(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \dfrac{1}{{f\left( x \right)}} = \dfrac{1}{2}\) \( \Rightarrow y = \dfrac{1}{2}\) là TCN của đồ thị hàm số \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\).
\(\mathop {\lim }\limits_{x \to - 1} g\left( x \right) = \mathop {\lim }\limits_{x \to - 1} \dfrac{1}{{f\left( x \right)}} = 0\) \( \Rightarrow x = - 1\) không là TCĐ của đồ thị hàm số \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\).
Xét phương trình \(f\left( x \right) = 0\), dựa vào BBT ta thấy phương trình có 2 nghiệm phân biệt thỏa mãn khác \( - 1\).
Do đó đồ thị hàm số \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\) có 2 TCĐ.
Vậy đồ thị hàm số \(y = g\left( x \right) = \dfrac{1}{{f\left( x \right)}}\) có tất cả 4 đường tiệm cận.
Chọn A.