Câu hỏi

Hình chóp tam giác đều \(S.ABC\) có cạnh đáy là a và cạnh bên tạo với đáy một góc \({45^0}\). Tính theo \(a\) thể tích khối chóp \(S.ABC\).

  • A \(\dfrac{{{a^3}}}{4}\)
  • B \(\dfrac{{{a^3}}}{{12}}\)
  • C \(\dfrac{{{a^3}}}{8}\)
  • D \(\dfrac{{{a^3}}}{{24}}\)

Phương pháp giải:

Thể tích hình chóp \(V = \dfrac{1}{3}S.h\) với \(S\) là diện tích đáy và \(h\) là chiều cao hình chóp

Lời giải chi tiết:

Gọi \(H\) là trọng tâm tam giác \(ABC\). Vì \(S.ABC\) là hình chóp tam giác đều nên \(SH \bot \left( {ABC} \right)\)

Gọi \(D\) là trung điểm của \(BC \Rightarrow AH = \dfrac{2}{3}AD\)

Vì \(AD\) là đường trung tuyến trong tam giác \(ABC\) đều cạnh \(a\) nên \(AD = \dfrac{{a\sqrt 3 }}{2}\)\( \Rightarrow AH = \dfrac{2}{3}AD\)\( = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

Ta có \(SH \bot \left( {ABC} \right) \Rightarrow \) góc giữa cạnh bên \(SA\) và đáy là góc giữa \(SA\) và \(AH\), hay là góc \(SAH\)

Theo đề bài ta có

\(\widehat {SAH} = {45^0} \Rightarrow \Delta SAH\) vuông cân tại \(H \Rightarrow SH = AH = \dfrac{{a\sqrt 3 }}{3}\)

Diện tích tam giác \(ABC\) đều cạnh \(a\) là \(\dfrac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}{S_{ABC}}.SH\)\( = \dfrac{1}{3}.\dfrac{{{a^2}\sqrt 3 }}{4}.\dfrac{{a\sqrt 3 }}{3}\)\( = \dfrac{{{a^3}}}{{12}}\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay