Câu hỏi

Tính giá trị của biểu thức \(A = 3{x^3}y - 5{x^2}{y^2} - 2x{y^3}\) tại \(x = 24;\,\,y = 12\)

  • A \(840\)      
  • B \(120\)                
  • C \(0\)                   
  • D \(240\)

Phương pháp giải:

Rút nhân tử chung \(xy\) và tách \(5xy\) thành \( - 6xy + xy\) để tạo nhân tử chung \(x - 2y\) rồi thay \(x = 24;\,\,y = 12\) để tính toán.

Lời giải chi tiết:

\(\begin{array}{l}A = 3{x^3}y - 5{x^2}{y^2} - 2x{y^3}\\\,\,\,\,\, = xy\left( {3{x^2} - 5xy - 2{y^2}} \right)\\\,\,\,\,\, = xy\left( {3{x^2} - 6xy + xy - 2{y^2}} \right)\\\,\,\,\,\, = xy\left[ {3x\left( {x - 2y} \right) + y\left( {x - 2y} \right)} \right]\\\,\,\,\,\, = xy\left( {x - 2y} \right)\left( {3x + y} \right)\end{array}\)

Thay \(x = 24;\,\,y = 12\) vào \(A\)\( \Rightarrow A = 24.12\left( {24 - 2.12} \right)\left( {3.24 + 12} \right)\)\( = 24.12.0.84 = 0.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay