Câu hỏi

Cho khối chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng \({45^0}\). Thể tích khối chóp đã cho bằng:

  • A \(\dfrac{{{a^3}}}{3}\)
  • B \(\dfrac{{4{a^3}}}{3}\)
  • C \(4{a^3}\)
  • D \(2{a^3}\)  

Phương pháp giải:

- Xác định góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Sử dụng tỉ số lượng giác trong tam giác vuông hoặc tính chất tam giác vuông cân tính chiều cao.

- Sử dụng công thức tính thể tích khối chóp \(V = \dfrac{1}{3}Sh\) với \(S,\,\,h\) lần lượt là diện tích đáy và chiều cao của khối chóp.

Lời giải chi tiết:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

Gọi M là trung điểm của CD ta có: \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\SM \subset \left( {SCD} \right),\,\,SM \bot CD\\OM \subset \left( {ABCD} \right),\,\,OM \bot CD\end{array} \right.\)\( \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO = {45^0}\).

\( \Rightarrow \Delta SOM\) vuông cân tại O \( \Rightarrow SO = OM = \dfrac{1}{2}AD = a\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}.a.{\left( {2a} \right)^2} = \dfrac{{4{a^3}}}{3}\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay