Câu hỏi
Trong hình bên .\(M,\,\,N\). lần lượt là điểm biểu diễn số phức \(z\) và \({\rm{w}}{\rm{.}}\) Số phức \(z + {\rm{w}}\) bằng?
- A \(1 - 3i\)
- B \(3 + i\)
- C \(1 + 3i\)
- D \(3 - i\)
Phương pháp giải:
Cho số phức \(z = x + yi\;\;\left( {x,\;y \in \mathbb{R}} \right) \Rightarrow M\left( {x;\;y} \right)\) là điểm biểu diễn số phức \(z.\)
Cho hai số phức: \({z_1} = {a_1} + {b_1}i,\,\,\,{z_2} = {a_2} + {b_2}i\,\,\,\,\left( {{a_1},\,\,{b_1},\,\,{a_2},\,\,{b_2} \in \mathbb{R}} \right).\) Khi đó: \({z_1} + {z_2} = \left( {{a_1} + {a_2}} \right) + \left( {{b_1} + {b_2}} \right)i.\)
Lời giải chi tiết:
Dựa vào đồ thị hàm số ta thấy: \(M\left( { - 1;\,\,2} \right) \Rightarrow z = - 1 + 2i\) và \(N\left( {2;\,\,1} \right) \Rightarrow {\rm{w}} = 2 + i.\)
Khi đó ta có: \(z + {\rm{w}} = - 1 + 2i + 2 + i = 1 + 3i.\)
Chọn C.