Câu hỏi

Tung một con súc sắc đồng chất cân đối ba lần. Tính xác suất để có ít nhất một lần xuất hiện mặt có 6 chấm:

  • A \({\left( {\dfrac{5}{6}} \right)^3}\)
  • B \(1 - {\left( {\dfrac{1}{6}} \right)^3}\)
  • C \({\left( {\dfrac{1}{6}} \right)^3}\)
  • D \(1 - {\left( {\dfrac{5}{6}} \right)^3}\)

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “Có ít nhất một lần xuất hiện mặt có 6 chấm”, suy ra biến cố đối \(\bar A\).

- Tính số phần tử của biến cố \(\bar A\), từ đó tính xác suất của biến cố \(\bar A\) là \(P\left( {\bar A} \right) = \dfrac{{n\left( {\bar A} \right)}}{{n\left( \Omega  \right)}}\).

- Tính xác suất của biến cố A: \(P\left( A \right) = 1 - P\left( {\bar A} \right).\)

Lời giải chi tiết:

Tung một con súc sắc đồng chất cân đối ba lần ta có không gian mẫu \(n\left( \Omega  \right) = {6^3} = 216\).

Gọi A là biến cố: “Có ít nhất một lần xuất hiện mặt có 6 chấm”.

\( \Rightarrow \) Biến cố đối \(\bar A\): “Không có lần nào xuất hiện mặt 6 chấm”.

+ Lần tung thứ nhất có 5 khả năng.

+ Lần tung thứ hai có 5 khả năng.

+ Lần tung thứ ba có 5 khả năng.

\( \Rightarrow n\left( {\bar A} \right) = {5^3} \Rightarrow P\left( {\bar A} \right) = \dfrac{{{5^3}}}{{{6^3}}} = {\left( {\dfrac{5}{6}} \right)^3}\).

Vậy \(P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - {\left( {\dfrac{5}{6}} \right)^3}\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay