Câu hỏi

Rút gọn biểu thức \(A = \left( {{x^2} - 8x + 16} \right) - \left( {{x^2}{y^2} + 2xy + 1} \right)\). Tính giá trị của \(A\) với \(x = 4;\,y = 1\)

  • A \(A = -25\)
  • B \(A = 25\)
  • C \(A = 5\)
  • D \(A = -5\)

Phương pháp giải:

Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\); \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) để rút gọn \(A\) sau đó thay \(x = 4;y = 1\) vào \(A\) để tính giá trị của biểu thức.

Lời giải chi tiết:

\(\begin{array}{l}A = \left( {{x^2} - 8x + 16} \right) - \left( {{x^2}{y^2} + 2xy + 1} \right)\\\,\,\,\,\, = \left( {{x^2} - 2.4x + {4^2}} \right) - \left( {{x^2}{y^2} + 2xy + 1} \right)\\\,\,\,\,\, = {\left( {x - 4} \right)^2} - {\left( {xy + 1} \right)^2}\end{array}\)

Thay \(x = 4;\,y = 1\) vào \(A\)\( \Rightarrow A = {\left( {4 - 4} \right)^2} - {\left( {4.1 + 1} \right)^2}\)\( =  - {5^2} =  - 25\)

Vậy \(A =  - 25\) khi \(x = 4,\,\,y = 1.\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay