Câu hỏi
Tìm giá trị nhỏ nhất của biểu thức \(A = {\left( {2x + y} \right)^2} - 4xy + 4x - 6y + 10\).
- A \( - 1\)
- B \(0\)
- C \(1\)
- D \(2\)
Phương pháp giải:
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\); \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) để biến đổi biểu thức \(A\) thành tổng các bình phương.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}A = {\left( {2x + y} \right)^2} - 4xy + 4x - 6y + 10\\\,\,\,\,\, = 4{x^2} + 2.2x.y + {y^2} - 4xy + 4x - 6y + 10\\\,\,\,\, = 4{x^2} + 4x + 1 + {y^2} - 6y + 9 + 4xy - 4xy\\\,\,\,\, = {\left( {2x + 1} \right)^2} + {\left( {y - 3} \right)^2}\end{array}\)
Vì \({\left( {2x + 1} \right)^2} \ge {\rm{0}}\,\,\,\forall x;\,\,\,{\left( {y - 3} \right)^2} \ge 0\,\,\,\,\,\forall y\)
\( \Rightarrow A \ge 0\,\,\,\forall x,y\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}2x + 1 = 0\\y - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{ - 1}}{2}\\y = 3\end{array} \right.\)
Vậy \(A\) đạt giá trị nhỏ nhất bằng \(0\) khi \(\left\{ \begin{array}{l}x = \frac{{ - 1}}{2}\\y = 3\end{array} \right.\).
Chọn B.