Câu hỏi
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z - 3 = 0\). Vecto nào sau đây không phải là vecto pháp tuyến của mặt phẳng \(\left( P \right)\)?
- A \(\overrightarrow {{n_1}} = \left( {2; - 1;2} \right)\)
- B \(\overrightarrow {{n_2}} = \left( { - 2;1; - 2} \right)\)
- C \(\overrightarrow {{n_3}} = \left( {4; - 2;4} \right)\)
- D \(\overrightarrow {{n_4}} = \left( {6;3;6} \right)\)
Phương pháp giải:
- Mặt phẳng \(Ax + By + Cz + D = 0\) có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\).
- Mọi vectơ cùng phương với vectơ \(\overrightarrow n \) đều là 1 VTPT của \(\left( P \right)\).
Lời giải chi tiết:
Mặt phẳng \(\left( P \right)\)\(:2x - y + 2z - 3 = 0\) có 1 VTPT là \(\overrightarrow n = \left( {2; - 1;2} \right)\)
Mặt khác ta thấy \(\overrightarrow n = \left( {2; - 1;2} \right)\) không cùng phương với \(\overrightarrow {{n_4}} = \left( {6;3;6} \right)\) do đó \(\overrightarrow {{n_4}} = \left( {6;3;6} \right)\) không là vecto pháp tuyến của \(\left( P \right)\).
Chọn D.