Câu hỏi

Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong khoảng thời gian \(\dfrac{T}{4}\), quãng đường lớn nhất mà vật có thể đi được là

  • A \(A\sqrt 2 \)
  • B \(A\sqrt 3 \)  
  • C \(A\)   
  • D \(1,5A\)

Phương pháp giải:

Quãng đường lớn nhất vật đi được trong khoảng thời gian \(t < \dfrac{T}{2}\): \({S_{\max }} = 2A\sin \dfrac{{\Delta \varphi }}{2}\)

Góc quay của vecto quay trong thời gian t: \(\Delta \varphi  = \omega t = \dfrac{{2\pi }}{T}.t\)

Lời giải chi tiết:

Trong khoảng thời gian \(\dfrac{T}{4}\), vecto quay được góc:

\(\Delta \varphi  = \dfrac{{2\pi }}{T}.t = \dfrac{{2\pi }}{T}.\dfrac{T}{4} = \dfrac{\pi }{2}\,\,\left( {rad} \right)\)

Quãng đường lớn nhất vật đi được trong khoảng thời gian \(\dfrac{T}{4}\) là:

\({S_{\max }} = 2A\sin \dfrac{{\Delta \varphi }}{2} = 2A.\sin \dfrac{\pi }{4} = A\sqrt 2 \)

Chọn A.


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay