Câu hỏi

Trong không gian Oxyz, cho hai điểm \(A\left( {0;1;2} \right),\) \(B\left( { - 3;4; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - 2y - z - 2 = 0\). Xét điểm M thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + M{B^2}\) bằng

  • A 27
  • B 45
  • C 21
  • D 18

Phương pháp giải:

- Tìm tọa độ điểm I sao cho \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \).

- Tìm M là hình chiếu của I trên \(\left( P \right)\).

Lời giải chi tiết:

Ta có \(A\left( {0;1;2} \right),B\left( { - 3;4; - 1} \right)\) và \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \)

Nên \(I\left( { - 1;2;1} \right)\).

Khi đó ta có

\(2M{A^2} + M{B^2} = 2{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2} = 3M{I^2} + 2I{A^2} + I{B^2} + 2\overrightarrow {MI} \left( {2\overrightarrow {IA}  + \overrightarrow {IB} } \right) = 3M{I^2} + 2I{A^2} + I{B^2}\)

Có giá trị nhỏ nhất khi \(MI\) nhỏ nhất hay M là hình chiếu của I  trên \(\left( P \right)\).

Ta có \(M\left( { - 1 + 2t;2 - 2t;1 - t} \right) \in \left( P \right):2x - 2y - z - 2 = 0\) nên \(t = 1 \Rightarrow M\left( {1;0;0} \right)\)

Khi đó \(T = 2M{A^2} + M{B^2} = 45\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay