Câu hỏi

Trong không gian Oxyz, cho hai điểm \(M\left( { - 3;0;3} \right),\) \(N\left( {3;0; - 3} \right)\). Phương trình của mặt phẳng trung trực của đoạn thẳng MN

  • A \(x + z = 0\).
  • B \(z = 0\)
  • C \(x - z = 0\).
  • D \(x = 0\).

Phương pháp giải:

- Tìm trung điểm của MN: Trung điểm I đoạn MN có tọa độ là \(\left( {\dfrac{{{x_M} + {x_N}}}{2};\dfrac{{{y_M} + {y_N}}}{2};\dfrac{{{z_M} + {z_N}}}{2}} \right)\).

- Tìm \(\overrightarrow {MN} \) rồi viết phương trình mặt phẳng trung trực là mặt phẳng đi qua I và nhận \(\overrightarrow {MN} \) là 1 VTPT.

- Viết phương trình mặt phẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\) là:

\(A\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Lời giải chi tiết:

Mặt phẳng trung trực của đoạn thẳng MN có vecto pháp tuyến là \(\overrightarrow {MN} \) và đi qua trung điểm của MN.

Ta có \(M\left( { - 3;0;3} \right),N\left( {3;0; - 3} \right)\) có trung điểm \(I\left( {0;0;0} \right)\)

Và \(\overrightarrow {MN}  = \left( {6;0; - 6} \right)\) hay \(\left( {1;0; - 1} \right)\)

Mặt phẳng có vecto pháp tuyến là \(\left( {1;0; - 1} \right)\) và đi qua \(I\left( {0;0;0} \right)\) có phương trình là \(x - z = 0\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay