Câu hỏi

Trong không gian Oxyz, phương trình của mặt phẳng đi qua ba điểm \(M\left( {0;0; - 1} \right),\) \(N\left( {0;1;0} \right)\) và \(E\left( {1;0;0} \right)\) là 

  • A \(x + y - z = 0\)
  • B \( - x + y + z = 1\)
  • C \(x + y - z = 1\)
  • D \( - x + y + z = 0\)

Phương pháp giải:

Áp dụng công thức viết phương trình mặt chắn đi qua 3 điểm đặc biệt có tọa độ \(\left( {a;0;0} \right),\) \(\left( {0;b;0} \right),\) \(\left( {0;0;c} \right)\) là \(\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1.\)

Lời giải chi tiết:

Phương trình mặt phẳng đi qua 3 điểm \(E\left( {1;0;0} \right),\) \(N\left( {0;1;0} \right),\)\(M\left( {0;0; - 1} \right)\) là \(\dfrac{x}{1} + \dfrac{y}{1} + \dfrac{z}{{ - 1}} = 1\)\( \Leftrightarrow x + y - z - 1 = 0.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay