Câu hỏi
Cho hàm số liên tục trên \(\left[ {0;1} \right]\) thỏa mãn \(\int\limits_0^1 {{{\left[ {f\left( x \right)} \right]}^2}dx} = 4\). Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\) \(y = 0,\) \(x = 0,\) \(x = 1\) quay quanh trục hoành bằng
- A \(4{\pi ^2}\)
- B \(2\pi \)
- C
\(4\pi \)
- D 4
Phương pháp giải:
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Khi quay hình phẳng như hình vẽ bên quanh trục Ox ta được khối tròn xoay có thể tích là: \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
Lời giải chi tiết:
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = 0,x = 1\) quay quanh trục hoành là: \(V = \pi \int\limits_0^1 {{{\left[ {f\left( x \right)} \right]}^2}dx} = 4\pi .\)
Chọn C.