Câu hỏi
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\). Mệnh đề nào sau đây đúng?
- A \(S = \pi \int\limits_0^4 {{3^{2x}}dx} \)
- B \(S = \int\limits_0^4 {\left( { - {3^x}} \right)dx} \)
- C \(S = \int\limits_0^4 {{3^x}dx} \)
- D \(S = \pi \int\limits_0^4 {{3^x}dx} \)
Phương pháp giải:
Cho hàm số \(f\left( x \right)\)liên tục \(\left[ {a;b} \right]\), diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\),\(y = g\left( x \right)\), các đường thẳng \(x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)
Lời giải chi tiết:
Hình phẳng giới hạn bởi đồ thị hàm số \(y = - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\) có diện tích là:
\(S = \int\limits_0^4 {\left| { - {3^x}} \right|dx} = \int\limits_0^4 {{3^x}dx} \)
Chọn C.