Câu hỏi
Biết rằng \(\left( {2 + 3i} \right)a + \left( {1 - 2i} \right)b = 4 + 13i\) với \(a,\,\,b\) là các số thực. Giá trị của \(a + b\) bằng
- A \(1\)
- B \(9\)
- C \(5\)
- D \( - 3.\)
Phương pháp giải:
- Hai số phức bằng nhau \({a_1} + {b_1}i = {a_2} + {b_2}i \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} = {b_2}\end{array} \right.\).
- Giải hệ phương trình tìm \(a,\,\,b\) sau đó tính tổng \(a + b\).
Lời giải chi tiết:
\(\begin{array}{l}\,\,\,\,\,\,\left( {2 + 3i} \right)a + \left( {1 - 2i} \right)b = 4 + 13i\\ \Leftrightarrow \left( {2a + b} \right) + \left( {3a - 2b} \right)i = 4 + 13i\\ \Leftrightarrow \left\{ \begin{array}{l}2a + b = 4\\3a - 2b = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 2\end{array} \right.\end{array}\)
Vậy \(a + b = 3 + \left( { - 2} \right) = 1.\)
Chọn A.