Câu hỏi
Số phức \(z\) thỏa mãn \(z + 2\overline z = {\left( {1 + 5i} \right)^2}\) có phần ảo là:
- A
\( - 8\)
- B
\( - 8i\)
- C \( - 10\)
- D \( - 10i\)
Phương pháp giải:
- Đặt \(z = x + yi \Rightarrow \overline z = x - yi\).
- Thay vào giả thiết, đưa phương trình về dạng hai số phức bằng nhau.
- Hai số phức bằng nhau khi và chỉ khi chúng có phần thực bằng nhau và phần ảo bằng nhau.
- Giải hệ phương trình tìm \(x,\,\,y\).
Lời giải chi tiết:
Đặt \(z = x + yi \Rightarrow \overline z = x - yi\). Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\,z + 2\overline z = {\left( {1 + 5i} \right)^2}\\ \Leftrightarrow x + yi + 2\left( {x - yi} \right) = - 24 + 10i\\ \Leftrightarrow 3x - yi = - 24 + 10\\ \Rightarrow \left\{ \begin{array}{l}3x = - 24\\ - y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 8\\y = - 10\end{array} \right.\end{array}\)
Vậy \(z = - 8 - 10i\) có phần ảo bằng \( - 10\).
Chọn C.