Câu hỏi

Một chất điểm chuyển động có phương trình \(s\left( t \right) = A\cos \left( {wt + \varphi } \right)\,\,\left( m \right)\). Phương trình này gọi là phương trình dao động điều hòa. Khi đó vận tốc tức thời của chuyển động tại thời điểm \(t\) là \(v\left( t \right) = s'\left( t \right)\). Cho biết \(A = 20\,\,cm,\,\,w = 5\pi \,\,\left( {rad/s} \right),\,\,\varphi  = \dfrac{\pi }{4}\,\,\left( {rad} \right)\).

Câu 1:

Tính vận tốc tại thời điểm \(t = 10s\).

  • A \(- \dfrac{{\sqrt 2 }}{2}\pi \,\,\left( {m/s} \right)\).  
  • B \(  2\pi \,\,\left( {m/s} \right)\).  
  • C \(- \sqrt 2 \pi \,\,\left( {m/s} \right)\).  
  • D \( 2\sqrt 2 \,\,\left( {m/s} \right)\).

Phương pháp giải:

\(v\left( t \right) = s'\left( t \right)\).

Lời giải chi tiết:

\(v\left( t \right) = s'\left( t \right) =  - Aw\sin \left( {wt + \varphi } \right)\).

\( \Rightarrow v\left( {10} \right) =  - 0,2.5\pi .\sin \left( {5\pi .10 + \dfrac{\pi }{4}} \right) =  - \dfrac{{\sqrt 2 }}{2}\pi \,\,\left( {m/s} \right)\).

Chọn A.


Câu 2:

Tính vận tốc lớn nhất của chuyển động.

  • A \({v_{max}} =  2 \,\,\left( {m/s} \right)\).  
  • B \({v_{max}} =  \pi \,\,\left( {m/s} \right)\).  
  • C \({v_{max}} =  \dfrac{\pi}{2} \,\,\left( {m/s} \right)\).  
  • D \({v_{max}} =  \dfrac{\sqrt 2\pi}{2} \,\,\left( {m/s} \right)\).

Phương pháp giải:

Sử dụng tính chất \( - 1 \le \sin \alpha  \le 1\,\,\forall \alpha \).

Lời giải chi tiết:

Ta cos: \(v\left( t \right) =  - Aw\sin \left( {wt + \varphi } \right) \le Aw\)

Dấu “=” xảy ra \( \Leftrightarrow \sin \left( {wt + \varphi } \right) =  - 1 \Leftrightarrow wt + \varphi  =  - \dfrac{\pi }{2} + k2\pi \).

\(\begin{array}{l} \Leftrightarrow 5\pi t + \dfrac{\pi }{4} =  - \dfrac{\pi }{2} + k2\pi \\ \Leftrightarrow 5\pi t =  - \dfrac{{3\pi }}{4} + k2\pi \\ \Leftrightarrow t = \dfrac{{ - 3}}{{20}} + \dfrac{{2k}}{5}\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy \({v_{max}} = Aw = 0,2.5\pi  = \pi \,\,\left( {m/s} \right)\).

Chọn  B.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay