Câu hỏi
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - 6{x^2} + 8x\) với trục hoành là
- A \(S = 4.\)
- B \(S = 8.\)
- C \(S = 6.\)
- D \(S = 10.\)
Phương pháp giải:
- Xét phương trình hoành độ giao điểm.
- Diện tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết:
Xét phương trình hoành độ giao điểm: \({x^3} - 6{x^2} + 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 2\\x = 0\end{array} \right.\)
Khi đó ta có:
\(\begin{array}{l}S = \int\limits_0^4 {\left| {{x^3} - 6{x^2} + 8x} \right|dx} \\S = \int\limits_0^2 {\left| {{x^3} - 6{x^2} + 8x} \right|dx} + \int\limits_2^4 {\left| {{x^3} - 6{x^2} + 8x} \right|dx} \\S = \left| {\int\limits_0^2 {\left( {{x^3} - 6{x^2} + 8x} \right)dx} } \right| + \left| {\int\limits_2^4 {\left( {{x^3} - 6{x^2} + 8x} \right)dx} } \right|\\S = 4 + 4 = 8\end{array}\)
Chọn B.