Câu hỏi

Trong không gian Oxyz, mặt phẳng nào sau đây song song với trục Oy ?

  • A \(\left( \delta  \right):7x - 4y + 6 = 0.\)
  • B \(\left( \beta  \right):3x + 2z = 0.\)
  • C \(\left( \gamma  \right):y + 4z - 3 = 0.\)
  • D

    \(\left( \alpha  \right):x - 3z + 4 = 0.\)


Phương pháp giải:

Mặt phẳng song song với trục \(Oy\) có VTPT vuông góc với \(\overrightarrow j \left( {0;1;0} \right)\).

Lời giải chi tiết:

Xét mặt phẳng bất kì \(\left( P \right):\,\,Ax + By + Cz + D = 0\) có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\).

Để mặt phẳng này song song với \(Oy\) thì \(\overrightarrow n .\overrightarrow j  = 0\) với \(\overrightarrow j \left( {0;1;0} \right)\) là 1 VTCP của \(Oy\).

\( \Rightarrow A.0 + B.1 + C.0 = 0 \Leftrightarrow B = 0\) \( \Rightarrow \overrightarrow n \left( {A;0;C} \right)\).

Lại có \(Oy\parallel \left( P \right) \Rightarrow O \notin \left( P \right) \Rightarrow D \ne 0\).

Trong 4 đáp án ta thấy mặt phẳng \(\left( \alpha  \right):x - 3z + 4 = 0.\)thỏa mãn điều kiện trên.

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay