Câu hỏi
Cho \(\int\limits_0^1 {f\left( x \right)dx} = - 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:
- A \( - 10\)
- B \(12\)
- C \( - 17\)
- D \(1\)
Phương pháp giải:
Sử dụng các tính chất của tích phân: \(\int\limits_a^b {\left[ {mf\left( x \right) + ng\left( x \right)} \right]dx} = m\int\limits_a^b {f\left( x \right)dx} + n\int\limits_a^b {g\left( x \right)dx} \).
Lời giải chi tiết:
\(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = \int\limits_0^1 {f\left( x \right)dx} + 3\int\limits_0^1 {g\left( x \right)dx} \)\( = - 2 + 3.\left( { - 5} \right) = - 17\).
Chọn C.