Câu hỏi

Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {\ln x} \), trục hoành và đường thẳng \(x = 3\). Khối tròn xoay tạo thành khi quay \(D\) quanh trục hoành có thể tích bằng bao nhiêu ?

  • A \(\left( {3\ln 3 - 3} \right)\pi .\)
  • B \(\left( {3\ln 3 + 2} \right)\pi .\)
  • C \(\dfrac{{2\pi }}{3}.\)
  • D \(\left( {3\ln 3 - 2} \right)\pi .\)

Phương pháp giải:

- Tìm hoành độ giao điểm của \(y = \sqrt {\ln x} \) và truc hoành.

- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Lời giải chi tiết:

Hoành độ giao điểm của \(y = \sqrt {\ln x} \) và truc hoành là nghiệm của phương trình

\(\sqrt {\ln x}  = 0 \Leftrightarrow \ln x = 0 \Leftrightarrow x = 1.\)

Thể tích khối tròn xoay là giới hạn bởi \(y = \sqrt {\ln x} \), trục hoành và đường thẳng \(x = 3\) là:

\(\begin{array}{l}V = \pi \int\limits_1^3 {\ln xdx}  = \pi \left( {\left. {x\ln x} \right|_1^3 - \int\limits_1^3 {x.\dfrac{1}{x}dx} } \right)\\\,\,\,\, = \pi \left( {3\ln 3 - \int\limits_1^3 {dx} } \right) = \pi \left( {3\ln 3 - 2} \right)\end{array}\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay