Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\,\,\,\,5x\,\,\,\,\,\,khi\,\,x \le 0\\{x^2} + 1\,\,\,khi\,\,x > 0\end{array} \right.\). Mệnh đề nào sau đây đúng?
- A Hàm số gián đoạn tại \(x = 0\).
- B Hàm số liên tục tại \(x = 0\).
- C Hàm số gián đoạn tại \(x = 1\).
- D
Hàm số liên tục trên \(\mathbb{R}\).
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0}\) khi và chỉ khi hàm số xác định tại \({x_0}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
TXĐ: .
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {5x} \right) = 0\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {{x^2} + 1} \right) = 1\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên hàm số đã cho gián đoạn tại \(x = 0\).
Chọn A.