Câu hỏi

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có đỉnh \(B\left( {\frac{1}{2};\,\,1} \right)\). Đường tròn nội tiếp tam giác \(ABC\) tiếp xúc với các cạnh \(BC,\,\,CA,\,\,AB\) tương ứng tại các điểm \(D,\,\,E,\,\,F\), biết \(D\left( {3;\,\,1} \right)\) và phương trình đường thẳng \({\rm{EF}}\) là \(y - 3 = 0\). Biết điểm \(A\) có tung độ dương, tọa độ đỉnh \(A\) là:

  • A \(A\left( {3;\,\, - \frac{7}{3}} \right)\)                                    
  • B \(A\left( {3;\,\,\frac{{13}}{3}} \right)\)         
  • C \(A\left( { - 3;\,\,\frac{7}{3}} \right)\)                        
  • D \(A\left( {3;\,\,\frac{7}{3}} \right)\)

Phương pháp giải:

+) Chứng minh tam giác \(ABC\) cân tại \(A\).

+) \(A = AD \cap BF\).

Lời giải chi tiết:

*) \(\left( {{\rm{EF}}} \right):\,\,y - 2 = 0 \Rightarrow {\vec n_{{\rm{EF}}}} = \left( {0;\,\,1} \right) \Rightarrow {\vec u_{{\rm{EF}}}} = \left( {1;\,\,0} \right)\)

Ta có: \(B\left( {\frac{1}{2};\,\,1} \right),\,\,D\left( {3;\,\,1} \right) \Rightarrow \overrightarrow {BD}  = \left( {\frac{5}{2};\,\,0} \right) \Rightarrow {\vec u_{BD}} = \left( {1;\,\,0} \right)\)

\( \Rightarrow EF\,{\rm{//}}\,BD\)\( \Rightarrow EF\,{\rm{//}}\,BD \Rightarrow \Delta ABC\) cân tại \(A\).

*) Lập phương trình đường thẳng \(AD\)

Ta có:

+ \(AD\) là đường phân giác trong góc \(A\) nên \(AD \bot BC\)

+ \(\Delta ABC\) cân tại \(A\)

\( \Rightarrow AD \bot BC\)

\(\left( {AD} \right):\,\,\left\{ \begin{array}{l}{\rm{qua}}\,\,D\left( {3;\,\,1} \right)\\{{\vec n}_{AD}} = {{\vec u}_{BD}} = \left( {1;\,\,0} \right)\end{array} \right.\)\( \Rightarrow 1.\left( {x - 3} \right) + 0.\left( {y - 1} \right) = 0 \Leftrightarrow x - 3 = 0\)

*) Lập phương trình đường thẳng \(BF.\)

Gọi \(F\left( {t;\,\,3} \right) \Rightarrow \overrightarrow {BF}  = \left( {t - \frac{1}{2};\,\,2} \right)\)

Ta có: \(BD = BF \Rightarrow \sqrt {{{\left( {\frac{5}{2}} \right)}^2}}  = \sqrt {{{\left( {t - \frac{1}{2}} \right)}^2} + {2^2}}  \Leftrightarrow \frac{{25}}{4} = {\left( {t - \frac{1}{2}} \right)^2} + {2^2} \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = 2\end{array} \right.\)

+) Với \(t =  - 1 \Rightarrow F\left( { - 1;\,\,3} \right),\,\,\overrightarrow {BF}  = \left( { - \frac{3}{2};\,\,2} \right)\).

\(\left( {BF} \right):\left\{ \begin{array}{l}{\rm{qua}}\,F\left( { - 1;\,\,3} \right)\\{{\vec n}_{BF}} = \left( {2;\,\,\frac{3}{2}} \right)\end{array} \right. \Rightarrow 2.\left( {x + 1} \right) + \frac{3}{2} \cdot \left( {y - 3} \right) = 0 \Leftrightarrow 2x + 2 + \frac{3}{2}y - \frac{9}{2} = 0 \Leftrightarrow 4x + 3y - 5 = 0\)

Ta có: \(A = AD \cap BF\)

Tọa độ giao điểm \(A\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}x - 3 = 0\\4x + 3y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y =  - \frac{7}{3}\end{array} \right. \Rightarrow A\left( {3;\,\, - \frac{7}{3}} \right)\) (loại)

+) Với \(t = 2 \Rightarrow F\left( {2;\,\,3} \right)\), \(\overrightarrow {BF}  = \left( { - \frac{3}{2};\,\,2} \right)\).

\(\left( {BF} \right):\left\{ \begin{array}{l}{\rm{qua}}\,F\left( {2;\,\,3} \right)\\{{\vec n}_{BF}} = \left( {2;\,\, - \frac{3}{2}} \right)\end{array} \right. \Rightarrow 2.\left( {x - 2} \right) - \frac{3}{2} \cdot \left( {y - 3} \right) = 0 \Leftrightarrow 2x - 4 - \frac{3}{2}y + \frac{9}{2} = 0 \Leftrightarrow 4x - 3y + 1 = 0\)

Ta có: \(A = AD \cap BF\)

Tọa độ giao điểm \(A\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}4x - 3y + 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \frac{{13}}{3}\end{array} \right. \Rightarrow A\left( {3;\,\,\frac{{13}}{3}} \right)\) (thỏa mãn)

Vậy \(A\left( {3;\,\,\frac{{13}}{3}} \right) \cdot \)

Chọn B


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay