Câu hỏi
Cho \(\int\limits_0^4 {f\left( x \right)dx} = 2019\). Tính tích phân \(I = \int\limits_0^2 {\left[ {f\left( {2x} \right) + f\left( {4 - 2x} \right)} \right]dx} \).
- A \(I = \dfrac{{2019}}{2}\).
- B \(I = 2019\).
- C \(I = 4038\).
- D \(I = 0\).
Phương pháp giải:
Sử dụng phương pháp đặt ẩn phụ.
Lời giải chi tiết:
Ta có: \(I = \int\limits_0^2 {\left[ {f\left( {2x} \right) + f\left( {4 - 2x} \right)} \right]dx} = \int\limits_0^2 {f\left( {2x} \right)dx} + \int\limits_0^2 {f\left( {4 - 2x} \right)dx} \)
Xét \({I_1} = \int\limits_0^2 {f\left( {2x} \right)dx} \):
Đặt \(t = 2x \Rightarrow \)\({I_1} = \int\limits_0^4 {f\left( t \right)\dfrac{1}{2}dt} = \dfrac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \dfrac{1}{2}\int\limits_0^4 {f\left( x \right)dx = \dfrac{1}{2}.2019 = \dfrac{{2019}}{2}} \)
Xét \({I_2} = \int\limits_0^2 {f\left( {4 - 2x} \right)dx} \):
Đặt \(t = 4 - 2x \Rightarrow \)\({I_1} = \int\limits_4^0 {f\left( t \right)\left( { - \dfrac{1}{2}dt} \right)} = - \dfrac{1}{2}\int\limits_4^0 {f\left( t \right)dt} = \dfrac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \dfrac{1}{2}\int\limits_0^4 {f\left( x \right)dx = \dfrac{1}{2}.2019 = \dfrac{{2019}}{2}} \)
\(I = {I_1} + {I_2} = \dfrac{{2019}}{2} + \dfrac{{2019}}{2} = 2019\).
Chọn B.