Câu hỏi

Cho tam giác \(ABC\) vuông tại \(A,\,\,AB = 6cm,\,AC = 8cm\). Gọi \({V_1}\) là thể tích khối nón tạo thành khi quay tam giác \(ABC\) quanh cạnh \(AB\) và \({V_2}\) là thể tích khối nón tạo thành khi quay tam giác \(ABC\) quanh cạnh \(AC\). Khi đó, tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng

  • A \(\dfrac{{16}}{9}\)
  • B \(\dfrac{9}{{16}}\).
  • C \(\dfrac{3}{4}\).
  • D \(\dfrac{4}{3}\).

Phương pháp giải:

Thể tích khối nón: \(V = \dfrac{1}{3}\pi {R^2}h\).

Lời giải chi tiết:

Thể tích khối nón tạo thành khi quay tam giác \(ABC\) quanh cạnh \(AB\) là: \({V_1} = \dfrac{1}{3}\pi .A{C^2}.AB = \dfrac{{\pi {{.8}^2}.6}}{3}\)

Thể tích khối nón tạo thành khi quay tam giác \(ABC\) quanh cạnh \(AC\) là: \({V_2} = \dfrac{1}{3}\pi .A{B^2}.AC = \dfrac{{\pi {{.6}^2}.8}}{3}\)

\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{{\pi {{.8}^2}.6}}{3}}}{{\dfrac{{\pi {{.6}^2}.8}}{3}}} = \dfrac{4}{3}\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay