Câu hỏi

Lò xo nhẹ một đầu cố định, đầu còn lại gắn vào sợi dây mềm, không dãn có treo vật nhỏ m như hình vẽ (H.1). Khối lượng dây và sức cản của không khí không đáng kể. Tại \(t = 0\), m đang đứng yên ở vị trí cân bằng thì được truyền vận tốc \({v_0}\) thẳng đứng từ dưới lên. Sau đó lực căng dây T tác dụng vào m phụ thuộc thời gian theo quy luật được mô tả bởi đồ thị hình vẽ (H.2). Biết lúc vật cân bằng lò xo giãn \(10cm\) và trong quá trình chuyển động m không va chạm với lò xo. Quãng đường m đi được kể từ lúc bắt đầu chuyển động đến thời điểm \({t_2}\) bằng

  • A 60 cm.
  • B 40 cm.
  • C 65 cm.
  • D 45 cm.

Phương pháp giải:

+ Vận dụng lí thuyết về lực căng dây và lực đàn hồi

+ Sử dụng công thức tính lực đàn hồi: \({F_{dh}} = k.\left( {\Delta l + x} \right)\)

+ Đọc đồ thị \(T - t\)

Lời giải chi tiết:

Ta có:

\(\Delta {l_0} = 10cm\)

Lực căng dây \(T = {F_{dh}}\)

\( \Rightarrow \) \({T_{max}}\) khi \({F_{d{h_{max}}}}\)

Tại thời điểm ban đầu: \(t = 0\) thì \(T = \dfrac{2}{6}{T_{max}}\)  lực đàn hồi khi này \({F_{d{h_0}}} = k.\Delta {l_0} = \dfrac{1}{3}{T_{max}}\)

\(\begin{array}{l} \Rightarrow \dfrac{{{F_{d{h_0}}}}}{{{F_{d{h_{max}}}}}} = \dfrac{{\dfrac{1}{3}{T_{max}}}}{{{T_{max}}}} = \dfrac{1}{3} = \dfrac{{k\Delta {l_0}}}{{k\left( {\Delta {l_0} + A} \right)}}\\ \Rightarrow A = 2\Delta {l_0} = 20cm\end{array}\)

Dây trùng khi lò xo nén và dây căng khi lò xo dãn

Ta có: \({S_1} = 10cm\)

\({S_2} = {h_{max}}\) ta có \(\dfrac{1}{2}m{v^2} = mg{h_{max}}\)

\( \Rightarrow {S_2} = \dfrac{{{v^2}}}{{2g}}\)

Lại có vị trí ném có li độ \(x =  - \Delta {l_0} =  - \dfrac{A}{2}\) suy ra vận tốc tại đó: \(v =  - \omega A\dfrac{{\sqrt 3 }}{2}\)

\( \Rightarrow {S_2} = \dfrac{{3{A^2}}}{{8\Delta {l_0}}} = \dfrac{{{{3.20}^2}}}{{8.10}} = 15cm\)

\( \Rightarrow \) Quãng đường vật m đi được từ thời điểm ban đầu đến \({t_2}\) là: \(S = {S_1} + 2{S_2} = 10 + 2.15 = 40cm\)

Chọn B


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay