Câu hỏi
Tính tích phân \(I = \int\limits_0^1 {\left| {x - 2} \right|dx} \) ta được kết quả:
- A \(\dfrac{1}{2}\)
- B \(1\)
- C \(\dfrac{3}{2}\)
- D \(2\)
Phương pháp giải:
- Xét dấu của biểu thức \(x - 2\) trên \(\left[ {0;1} \right]\) và phá trị tuyệt đối.
- Sử dụng các nguyên hàm cơ bản để tính tích phân.
Lời giải chi tiết:
Với \(x \in \left[ {0;1} \right]\) thì \(x - 2 < 0\), do đó \(\left| {x - 2} \right| = 2 - x\).
Khi đó ta có: \(I = \int\limits_0^1 {\left| {x - 2} \right|dx} = \int\limits_0^1 {\left( {2 - x} \right)dx} \)\( = \left. {\left( {2x - \dfrac{{{x^2}}}{2}} \right)} \right|_0^1 = 2 - \dfrac{1}{2} = \dfrac{3}{2}\).
Chọn C.