Câu hỏi

Tìm tất cả các giá trị của m để hàm số \(y = {\left| x \right|^3} + m{x^2} + 3\left| x \right| + 1\) có 5 điểm cực trị

  • A \(m >  - 3\).
  • B \(m <  - 3\).
  • C \(m \le  - 3\).
  • D \(m \ge  - 3\).

Phương pháp giải:

Hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị khi và chỉ khi hàm số \(y = f\left( x \right)\) có 2 cực trị cùng dấu dương.

Lời giải chi tiết:

Đặt \(f\left( x \right) = {x^3} + m{x^2} + 3x + 1\).

Để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị khi và chỉ khi hàm số \(y = f\left( x \right)\) có 2 cực trị cùng dấu dương. Suy ra phương trình \(f'\left( x \right) = 0\) có 2 nghiệm dương phân biệt.

Ta có: \(f'\left( x \right) = 3{x^2} + 2mx + 3 = 0\) có 2 nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right.\).

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 9 > 0\\ - \dfrac{{2m}}{3} > 0\\\dfrac{3}{3} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 3\\m <  - 3\end{array} \right.\\m < 0\end{array} \right. \Leftrightarrow m <  - 3\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay