Câu hỏi

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\)  có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Hỏi hàm số \(y = f\left( x \right)\)đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\) tại điểm \({x_0}\) nào dưới đây?

 

  • A \({x_0} =  - 1\)
  • B \({x_0} = 0\)
  • C \({x_0} = 1\)
  • D \({x_0} = 3\)

Phương pháp giải:

Lập BBT của hàm số trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\), từ đó đưa ra đánh giá điểm mà hàm số đạt GTNN.

Lời giải chi tiết:

Dựa vào đồ thị hàm số \(f'\left( x \right)\) ta thấy: \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).

Ta có BBT như sau:

Vậy hàm số \(y = f\left( x \right)\)đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\dfrac{7}{2}} \right]\)tại điểm \({x_0} = 3.\)

Chọn: D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay