Câu hỏi

Tìm số nguyên dương n thỏa mãn \(C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1} = 1024\)

  • A \(n = 5\)
  • B \(n = 9\)
  • C \(n = 10\)
  • D \(n = 4\)

Lời giải chi tiết:

\( + )\)Xét: \({\left( {x - 1} \right)^{2n + 1}} = C_{2n + 1}^0.{x^{2n + 1}}.{\left( { - 1} \right)^0} + C_{2n + 1}^1.{x^{2n}}.{\left( { - 1} \right)^1} + ... + C_{2n + 1}^{2n + 1}.{x^0}.{\left( { - 1} \right)^{2n + 1}}\)

                             \( = C_{2n + 1}^0.{x^{2n + 1}} - C_{2n + 1}^1.{x^{2n}} + ... - C_{2n + 1}^{2n + 1}\)

\( + )\)Thay \(x = 1\) vào, ta có: \({\left( {1 - 1} \right)^{2n + 1}} = C_{2n + 1}^0 - C_{2n + 1}^1 + ... - C_{2n + 1}^{2n + 1}\)

\( \Leftrightarrow 0 = C_{2n + 1}^0 - C_{2n + 1}^1 + C_{2n + 1}^2 - C_{2n + 1}^3 + ... + C_{2n + 1}^{2n} - C_{2n + 1}^{2n + 1}\)

\( \Leftrightarrow \left( {C_{2n + 1}^0 + C_{2n + 1}^2 + ... + C_{2n + 1}^{2n}} \right) - \left( {C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1}} \right) = 0\)

\( \Leftrightarrow C_{2n + 1}^0 + C_{2n + 1}^2 + ... + C_{2n + 1}^{2n} = C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1}\)

\( + )\)Xét: \({\left( {x + 1} \right)^{2n + 1}} = C_{2n + 1}^0.{x^{2n + 1}}{.1^0} + C_{2n + 1}^1.{x^{2n}}{.1^1} + ... + C_{2n + 1}^{2n + 1}.{x^0}{.1^{2n + 1}}\)

\( + )\)Thay \(x = 1\) vào, ta có: \({\left( {1 + 1} \right)^{2n + 1}} = C_{2n + 1}^0 + C_{2n + 1}^1 + ... + C_{2n + 1}^{2n + 1}\)

                                                      \( = \left( {C_{2n + 1}^0 + C_{2n + 1}^2 + ... + C_{2n + 1}^{2n}} \right) + \left( {C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1}} \right)\)

                                                      \( = 2\left( {C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1}} \right)\)

                                                      \( = 2.1024\)

                        \( \Leftrightarrow {2^{2n + 1}} = {2^{11}}\)\( \Leftrightarrow 2n + 1 = 11\)\( \Leftrightarrow n = 5\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay