Câu hỏi

Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào các lọ hoa, tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng số hoa ly

  • A \(\dfrac{{3851}}{{4845}}\)
  • B \(\dfrac{1}{{71}}\)
  • C \(\dfrac{{36}}{{71}}\)
  • D \(\dfrac{{994}}{{4845}}\)

Lời giải chi tiết:

+) Gọi KGM “Chọn ngẫu nhiên 7 hoa từ 3 bó hoa” \( \Rightarrow {n_\Omega } = C_{21}^7 = 116280\)

+) Gọi A là biến cố: “Trong 7 bông hoa được chọn có số hoa hồng bằng số hoa ly”

TH1: 1 hoa hồng – 1 hoa ly – 5 hoa huệ: \( \Rightarrow C_8^1.C_7^1.C_6^5 = 336\)

TH2: 2 hoa hồng – 2 hoa ly – 3 hoa huệ \( \Rightarrow C_8^2.C_7^2.C_6^3 = 11760\)

TH3: 3 hoa hồng- 3 hoa ly – 1 hoa huệ: \( \Rightarrow C_8^3.C_7^3.C_6^1 = 11760\)

\(\begin{array}{l} \Rightarrow {n_{\left( A \right)}} = 336 + 11760 + 11760 = 23856\\ \Rightarrow {P_{\left( A \right)}} = \dfrac{{{n_{\left( A \right)}}}}{{{n_\Omega }}} = \dfrac{{994}}{{4845}}\end{array}\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay