Câu hỏi

Cho hàm số \(y = f\left( x \right)\)  có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right),\,\,\forall x \in \mathbb{R}.\)  Số điểm cực trị của hàm số đã cho là: 

  • A \(1.\)  
  • B \(2.\)  
  • C \(0.\)  
  • D \(3.\)  

Phương pháp giải:

Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\)  là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)

Lời giải chi tiết:

Ta có: \(f'\left( x \right) = 0\)

\(\begin{array}{l} \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 1} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2}\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\left( {boi\,\,2} \right)\\x = 2\,\,\,\left( {boi\,\,1} \right)\end{array} \right.\end{array}\)

\( \Rightarrow \) Hàm số \(y = f\left( x \right)\) có một điểm cực trị là: \(x = 2.\) 

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay