Câu hỏi

Một sóng cơ học lan truyền dọc theo một đường thẳng có phương trình dao động tại nguồn O là \({u_O} = A.\cos \left( {\dfrac{{2\pi t}}{T}} \right)cm\). Một điểm M trên đường thẳng, cách O một khoảng bằng \(\dfrac{1}{3}\) bước sóng ở thời điểm \(t = \dfrac{T}{2}\) có li độ uM = 2cm. Biên độ sóng A bằng:

  • A \(2\sqrt 3 cm\).   
  • B  2cm.
  • C  4cm. 
  • D  \(\dfrac{{4\sqrt 3 }}{3}cm\)

Phương pháp giải:

Phương trình sóng tại nguồn: \({u_O} = A.\cos \left( {\dfrac{{2\pi t}}{T}} \right)cm\)

Phương trình sóng tại M cách O một khoảng x: \({u_M} = A.\cos \left( {\dfrac{{2\pi t}}{T} - \dfrac{{2\pi .x}}{\lambda }} \right)cm\)

Thay \(t = \dfrac{T}{2}\) vào phương trình của uM suy ra được A

Lời giải chi tiết:

Phương trình sóng tại M cách O một khoảng  \(\dfrac{1}{3}\) bước sóng là:

\({u_M} = A.\cos \left( {\dfrac{{2\pi t}}{T} - \dfrac{{2\pi .\dfrac{\lambda }{3}}}{\lambda }} \right) = A.\cos \left( {\dfrac{{2\pi t}}{T} - \dfrac{{2\pi }}{3}} \right)cm\)

Tại \(t = \dfrac{T}{2}\) li độ uM = 2cm. Ta có:

\({u_M} = 2 \Leftrightarrow A.\cos \left( {\dfrac{{2\pi .\dfrac{T}{2}}}{T} - \dfrac{{2\pi }}{3}} \right) = 2cm \Rightarrow A = \dfrac{2}{{\cos \dfrac{\pi }{3}}} = 4cm\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay